Deuterium oxide

October 15, 2018
I鈥檓 water鈥檚 big sibling.
What molecule am I?
Image of Deuterium oxide 3D Image of Deuterium oxide

Deuterium oxide (D2O), aka 鈥渉eavy water鈥�, is the form of water that contains two atoms of the 2H, or D, isotope. The term heavy water is also used for water in which 2H atoms replace only some of the 1H atoms. In this case, rapid exchange between the two isotopes forms twice as many 鈥渟emiheavy鈥� HDO molecules as D2O.

Harold Urey, the 1934 Nobel Prize laureate in chemistry, . In 1931, he and his colleagues at Columbia University (New York City) carefully distilled 5 L of liquid nitrogen to produce 1 mL of molecular deuterium. Shortly afterward, they produced D2O from ordinary water by using prolonged electrolysis.

For decades, D2O has been extremely useful in many chemical applications. The difference between a reaction rate in D2O solvent versus that in H2O often provides clues as to the reaction鈥檚 mechanism. This is especially important if water is one of the reactants.

In some nuclear reactors, D2O is used to slow down neutrons so that they react with fissionable 235U rather than nonfissioning 238U, thus eliminating the need for uranium enrichment. D2O is superior to H2O for this use because of its 鈮�6 times greater thermal neutron capture cross section.

Deuterium oxide hazard information

GHS classification*: not a hazardous substance or mixture

*Globally Harmonized System of Classification and Labeling of Chemicals.聽.

Deuterium oxide fast facts

CAS Reg. No.7789-20-0
Empirical formulaD2O
Molar mass20.03 g/mol
AppearanceColorless liquid
Melting point3.8 潞C
Boiling point101.4 潞C
Water solubilityMiscible
Chemical Abstract Service - a division of ACS

, the most authoritative and comprehensive source for chemical information.

Molecule of the Week needs your suggestions!

If your favorite molecule is not in our聽archive, please send us a message. The molecule can be notable for its current or historical importance or for any quirky reason. Thank you!

Stay Ahead of the Chemistry Curve

Learn how ACS can help you stay ahead in the world of chemistry.