FOR IMMEDIATE RELEASE聽|聽August 21, 2018

Nanobot pumps destroy nerve agents

Note to journalists: Please report that this research will be presented at a meeting of the American Chemical 中国365bet中文官网.

A press conference on this topic will be held Tuesday, Aug. 21, at 10:30 a.m. Eastern time in the Boston Convention & Exhibition Center. Reporters may check-in at the press center, Room 102 A, or watch live on YouTube聽. To ask questions online, sign in with a Google account.

BOSTON, Aug. 21, 2018 鈥� Once in the territory of science fiction, 鈥渘anobots鈥� are closer than ever to becoming a reality, with possible applications in medicine, manufacturing, robotics and fluidics. Today, scientists report progress in developing the tiny machines: They have made nanobot pumps that destroy nerve agents, while simultaneously administering an antidote.

The researchers will present their results today at the 256th National Meeting & Exposition of the American Chemical 中国365bet中文官网 (ACS). ACS, the world鈥檚 largest scientific society, is holding the meeting here through Thursday. It features more than 10,000 presentations on a wide range of science topics.

According to Ayusman Sen, Ph.D., the project鈥檚 principal investigator, this study arose from more general research aimed at making nanobots from enzymes. 鈥淲e have been looking at how to convert chemical energy into motion,鈥� he says. 鈥淲e take the energy that鈥檚 generated from catalytic reactions to cause the motion of enzymes.鈥�

To make his nanobots, Sen and his group at The Pennsylvania State University used enzymes found in nature. These are proteins that help specific chemical reactions occur, converting a reactant (raw material) into a product.

The realization that enzymes can move when catalyzing a reaction is a relatively new discovery. Previously, scientists thought that these proteins drifted along in the cytoplasm of the cell by passive diffusion, encountering their reactants and other enzymes by more-or-less chance interactions. However, Sen and others have recently shown that when enzymes catalyze a reaction, they move. Researchers still aren鈥檛 sure how this motion occurs, but it likely involves a change in the shape of the enzyme upon catalysis. Sen鈥檚 group has shown that these proteins can even swim along a path toward higher levels of reactant. These features make enzymes an attractive material for developing nanobots.

鈥淚f we take enzymes and anchor them to a surface so they cannot move, and we give them their reactant, they end up pumping the fluid surrounding them,鈥� Sen says. 鈥淪o they act as miniature fluid pumps that can be used for a variety of applications.鈥� He notes that the nanobots pump liquid at the rate of several microliters颅 --- or millionths of a liter 鈥�- per second.

Sen and his coworkers made nanobots to neutralize organophosphates, a class of nerve agents. Exposure to these chemicals during military combat or terrorist attacks can cause permanent neurological damage, and in some cases, death. An enzyme, called organophosphorus acid anhydrolase, can destroy these nerve agents. The researchers immobilized this enzyme on a gel that also contained an antidote. Exposure to organophosphates activates the enzyme. 鈥淭he enzyme actively pumps in the organosphosphate compound and destroys it, and at the same time pumps out an antidote,鈥� Sen says. Importantly, the system requires no external power source because the enzyme is fueled by the organophosphate reactant.

The nanobot pumps might someday be incorporated into protective clothing for the military or first responders, Sen says. He is also exploring applications for nanobots based on other enzymes, for example, an insulin-pumping device to treat diabetes and an enzyme-powered drug-delivery system. The Pennsylvania State University has filed a patent application on the promising new technology. 鈥淚f you want to make pumps that will pump very small amounts of liquid in a very precise way, this is one way to do that,鈥� Sen says.

The researchers acknowledge support and funding from the and the .

The American Chemical 中国365bet中文官网, the world鈥檚 largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical 中国365bet中文官网, contact [email protected].

###

Follow us:      

Media Contact

ACS Newsroom
newsroom@acs.org

Enzyme nanobots pump fluid and convert nerve agents into harmless products.
Credit: Ayusman Sen