FOR IMMEDIATE RELEASE聽|聽August 22, 2018

These lithium-ion batteries can鈥檛 catch fire because they harden on impact

Note to journalists: Please report that this research will be presented at a meeting of the American Chemical 中国365bet中文官网.

A press conference on this topic will be held Wednesday, Aug. 22, at 10:30 a.m. Eastern time in the Boston Convention & Exhibition Center. Reporters may check-in at the press center, Room 102 A, or watch live on YouTube聽. To ask questions online, sign in with a Google account.

BOSTON, Aug. 22, 2018 鈥� Lithium-ion batteries commonly used in consumer electronics are notorious for bursting into flame when damaged or improperly packaged. These incidents occasionally have grave consequences, including burns, house fires and at least one plane crash. Inspired by the weird behavior of some liquids that solidify on impact, researchers have developed a practical and inexpensive way to help prevent these fires.

They will present their results today at the 256th National Meeting & Exposition of the American Chemical 中国365bet中文官网 (ACS). ACS, the world鈥檚 largest scientific society, is holding the meeting here through Thursday. It features more than 10,000 presentations on a wide range of topics.

鈥淚n a lithium-ion battery, a thin piece of plastic separates the two electrodes,鈥� Gabriel Veith, Ph.D., says. 鈥淚f the battery is damaged and the plastic layer fails, the electrodes can come into contact and cause the battery鈥檚 liquid electrolyte to catch fire.鈥�

To make these batteries safer, some researchers instead use a nonflammable, solid electrolyte. But these solid-state batteries require significant retooling of the current production process, Veith says. As an alternative, his team mixes an additive into the conventional electrolyte to create an impact-resistant electrolyte. It solidifies when hit, preventing the electrodes from touching if the battery is damaged during a fall or crash. If the electrodes don鈥檛 touch each other, the battery doesn鈥檛 catch fire. Even better, incorporating the additive would require only minor adjustments to the conventional battery manufacturing process.

The project鈥檚 eureka moment came when Veith and his kids were playing with a mix of cornstarch and water known as oobleck. 鈥淚f you put the mixture on a cookie tray, it flows like a liquid until you start poking it, and then it becomes a solid,鈥� says Veith, who is based at Oak Ridge National Laboratory and is the project鈥檚 principal investigator. After the pressure is removed, the substance liquefies again. Veith realized he could exploit this reversible 鈥渟hear thickening鈥� behavior to make batteries safer.

This characteristic depends on a colloid, which is a suspension of tiny, solid particles in a liquid. In the case of oobleck, the colloid consists of cornstarch particles suspended in water. For the battery colloid, Veith and his colleagues at Oak Ridge and the University of Rochester used silica suspended in common liquid electrolytes for lithium-ion batteries. On impact, the silica particles clump together and block the flow of fluids and ions, he explains. The researchers used perfectly spherical, 200-nanometer-diameter particles of silica, or essentially a superfine sand. 鈥淚f you have that very uniform particle size, the particles disperse homogeneously in the electrolyte, and it works wonderfully,鈥� Veith says. 鈥淚f they鈥檙e not homogenously sized, then the liquid becomes less viscous on impact, and that鈥檚 bad.鈥�

A few other labs have been studying shear thickening to make batteries safer. One team previously reported on research with 鈥渇umed鈥� silica, which consists of tiny irregular particles of silica. Another group recently reported on the effect of using rod-shaped silica particles. Veith thinks his spherical particles might be easier to make than the rod-shaped silica and have a faster response and more stopping power on impact than fumed silica.

One of Veith鈥檚 major advances involves the production process for the batteries. During manufacture of traditional lithium-ion batteries, an electrolyte is squirted into the battery case at the end of the production process, and then the battery is sealed. 鈥淵ou can鈥檛 do that with a shear-thickening electrolyte because the minute you try to inject it, it solidifies,鈥� he says. The researchers solved this by putting the silica in place before adding the electrolyte. They are seeking a patent on their technique.

In the future, Veith plans to enhance the system so the part of the battery that鈥檚 damaged in a crash would remain solid, while the rest of the battery would go on working. The team is initially aiming for applications such as drone batteries, but they would eventually like to enter the automotive market. They also plan to make a bigger version of the battery, which would be capable of stopping a bullet. That could benefit soldiers, who often carry 20 pounds of body armor and 20 pounds of batteries when they鈥檙e on a mission, Veith says. 鈥淭he battery would function as their armor, and that would lighten the average soldier by about 20 pounds.鈥�

The project is being supported by the U.S. Department of Energy鈥檚 and .

The American Chemical 中国365bet中文官网, the world鈥檚 largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical 中国365bet中文官网, contact [email protected].

###

Follow us:      

Media Contact

ACS Newsroom
newsroom@acs.org

Adding powdered silica (in blue container) to the polymer layer (white sheet) that separates electrodes inside a test battery (gold bag) will prevent lithium-ion battery fires.
Credit: Gabriel Veith
High-Resolution Image