FOR IMMEDIATE RELEASE
View Larger Image
Environmental Science & Technology
Per- and polyfluoroalkyl substances (PFAS) are building up in the environment, and scientists are becoming concerned. These substances, ubiquitous as water-repellent or nonstick additives in many consumer products, are persistent and have been accumulating in organisms throughout the food chain over many years. Now, researchers reporting in the ACS journal聽Environmental Science & Technology聽have identified bacteria from a New Jersey wetland that, surprisingly, can break carbon-fluorine bonds and degrade PFAS.
The carbon-fluorine (C-F) covalent bond is the strongest in organic chemistry, and until now, no organism was known to be capable of breaking it. In previous work, Shan Huang and Peter Jaff茅 isolated a bacterium, called聽础肠颈诲颈尘颈肠谤辞产颈补肠别补别听sp. A6 (A6), from the soil of New Jersey wetlands that could perform an unusual chemical reaction: using iron in the soil to help break down ammonium, a pollutant found in sewage and fertilizer runoff, without any oxygen. Huang and Jaff茅 wondered if this reaction, called Feammox, could also help break down PFAS.
To find out, the researchers grew cultures of A6 in iron- and ammonium-rich medium and added one of two PFAS: perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS). The team found that A6 used the Feammox reaction to transfer electrons from ammonium or hydrogen gas to PFAS, removing the fluoride atoms and rendering the substances harmless. As a result, over a 100-day period, the microbes degraded up to 60% of the PFOA and 50% of the PFOS added to the cultures. These results indicate that under appropriate environmental conditions, A6 and the Feammox process could biodegrade PFAS in contaminated soil and groundwater, the researchers say.
The authors acknowledge funding from the Helen Shipley Hunt Fund.
Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.