FOR IMMEDIATE RELEASE
ACS News Service Weekly PressPac: April 28, 2021
Reducing blue light with a new type of LED that won’t keep you up all nightÌý Ìý
ACS Applied Materials & Interfaces
To be more energy efficient, many people have replaced their incandescent lights with light-emitting diode (LED) bulbs. However, those currently on the market emit a lot of blue light, which has been linked to eye troubles and sleep disturbances. Now, researchers reporting inÌýACS Applied Materials & InterfacesÌýhave developed a prototype LED that reduces â€� instead of masks â€� the blue component, while also making colors appear just as they do in natural sunlight.
LED light bulbs are popular because of their low energy consumption, long lifespan and ability to turn on and off quickly. Inside the bulb, an LED chip converts electrical current into high-energy light, including invisible ultraviolet (UV), violet or blue wavelengths. A cap that is placed on the chip contains multiple phosphors â€� solid luminescent compounds that convert high-energy light into lower-energy visible wavelengths. Each phosphor emits a different color, and these colors combine to produce a broad-spectrum white light. Commercial LED bulbs use blue LEDs and yellow-emitting phosphors, which appear as a cold, bright white light similar to daylight. Continual exposure to these blue-tinted lights has been linked to cataract formation, and turning them on in the evening can disrupt the production of sleep-inducing hormones, such as melatonin, triggering insomnia and fatigue. To create a warmer white LED bulb for nighttime use, previous researchers added red-emitting phosphors, but this only masked the blue hue without getting rid of it. So, Jakoah Brgoch and Shruti Hariyani wanted to develop a phosphor that, when used in a violet LED device, would result in a warm white light while avoiding the problematic wavelength range. Ìý
As a proof of concept, the researchers identified and synthesized a new luminescent crystalline phosphor containing europium ((Na1.92Eu0.04)MgPO4F). In thermal stability tests, the phosphor’s emission color was consistent between room temperature and the higher operating temperature (301 F) of commercial LED-based lighting. In long-term moisture experiments, the compound showed no change in the color or intensity of light produced. To see how the material might work in a light bulb, the researchers fabricated a prototype device with a violet-light LED covered by a silicone cap containing their luminescent blue compound blended with red-emitting and green-emitting phosphors. It produced the desired bright warm white light while minimizing the intensity across blue wavelengths, unlike commercial LED light bulbs. The prototype’s optical properties revealed the color of objects almost as well as natural sunlight, fulfilling the needs of indoor lighting, the researchers say, though they add that more work needs to be done before it is ready for everyday use.
The authors acknowledge funding from theÌýÌýand theÌý.
Ìý
###
The American Chemical Öйú365betÖÐÎĹÙÍø (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Öйú365betÖÐÎĹÙÍø is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodicalÌýChemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACSâ€� main offices are in Washington, D.C., and Columbus, Ohio.
Registered journalists can subscribe to the to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.
Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.
Media Contact
ACS Newsroom
newsroom@acs.org
###
La sociedad American Chemical Öйú365betÖÐÎĹÙÍø (ACS) es una organización sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformación del poder de la quÃmica. Su misión es promover el conocimiento cientÃfico, empoderar a la comunidad global y defender la integridad cientÃfica, y su visión es un mundo construido basándose en la ciencia. La Sociedad es lÃder mundial en la promoción de la excelencia en la educación cientÃfica y en el acceso a información e investigación relacionadas con la quÃmica a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias cientÃficas, libros electrónicos y noticias semanales periódicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las más citadas, las más fiables y las más leÃdas en la literatura cientÃfica; sin embargo, la propia ACS no realiza investigación quÃmica. Como lÃder en soluciones de información cientÃfica, su división CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservación, la conexión y el análisis de los conocimientos cientÃficos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.
Los periodistas registrados pueden suscribirse al en EurekAlert! para acceder a comunicados de prensa públicos y retenidos.Ìý Para consultas de los medios, comunÃquese con newsroom@acs.org.
Nota: ACS no realiza investigaciones, pero publica y divulga estudios cientÃficos revisados por expertos.â€�
View the image