FOR IMMEDIATE RELEASE
ACS News Service Weekly PressPac: May 05, 2021
An uncrackable combination of invisible ink and artificial intelligence听听
ACS Applied Materials & Interfaces
Coded messages in invisible ink sound like something only found in espionage books, but in real life, they can have important security purposes. Yet, they can be cracked if their encryption is predictable. Now, researchers reporting in听ACS Applied Materials & Interfaces听have printed complexly encoded data with normal ink and a carbon nanoparticle-based invisible ink, requiring both UV light and a computer that has been taught the code to reveal the correct messages.
Even as electronic records advance, paper is still a common way to preserve data. Invisible ink can hide classified economic, commercial or military information from prying eyes, but many popular inks contain toxic compounds or can be seen with predictable methods, such as light, heat or chemicals. Carbon nanoparticles, which have low toxicity, can be essentially invisible under ambient lighting but can create vibrant images when exposed to ultraviolet (UV) light 鈥� a modern take on invisible ink. In addition, advances in artificial intelligence (AI) models 鈥� made by networks of processing algorithms that learn how to handle complex information 鈥� can ensure that messages are only decipherable on properly trained computers. So, Weiwei Zhao, Kang Li, Jie Xu and colleagues wanted to train an AI model to identify and decrypt symbols printed in a fluorescent carbon nanoparticle ink, revealing hidden messages when exposed to UV light.
The researchers made carbon nanoparticles from citric acid and cysteine, which they diluted with water to create an invisible ink that appeared blue when exposed to UV light. The team loaded the solution into an ink cartridge and printed a series of simple symbols onto paper with an inkjet printer. Then, they taught an AI model, composed of multiple algorithms, to recognize symbols illuminated by UV light and decode them using a special codebook. Finally, they tested the AI model鈥檚 ability to decode messages printed using a combination of both regular red ink and the UV fluorescent ink. With 100% accuracy, the AI model read the regular ink symbols as 鈥淪TOP鈥�, but when a UV light was shown on the writing, the invisible ink illustrated the desired message 鈥淏EGIN鈥�. Because these algorithms can notice minute modifications in symbols, this approach has the potential to encrypt messages securely using hundreds of different unpredictable symbols, the researchers say.
The authors acknowledge funding from the Shenzhen Peacock Team Plan and the听听through the Graphene Manufacturing Innovation Center (201901161514).
听
###
The American Chemical 中国365bet中文官网 (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The 中国365bet中文官网 is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical听Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world鈥檚 scientific knowledge. ACS鈥� main offices are in Washington, D.C., and Columbus, Ohio.
Registered journalists can subscribe to the to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.
Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.
Media Contact
ACS Newsroom
newsroom@acs.org
###
La sociedad American Chemical 中国365bet中文官网 (ACS) es una organizaci贸n sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformaci贸n del poder de la qu铆mica. Su misi贸n es promover el conocimiento cient铆fico, empoderar a la comunidad global y defender la integridad cient铆fica, y su visi贸n es un mundo construido bas谩ndose en la ciencia. La Sociedad es l铆der mundial en la promoci贸n de la excelencia en la educaci贸n cient铆fica y en el acceso a informaci贸n e investigaci贸n relacionadas con la qu铆mica a trav茅s de sus m煤ltiples soluciones de investigaci贸n, publicaciones revisadas por expertos, conferencias cient铆ficas, libros electr贸nicos y noticias semanales peri贸dicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las m谩s citadas, las m谩s fiables y las m谩s le铆das en la literatura cient铆fica; sin embargo, la propia ACS no realiza investigaci贸n qu铆mica. Como l铆der en soluciones de informaci贸n cient铆fica, su divisi贸n CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservaci贸n, la conexi贸n y el an谩lisis de los conocimientos cient铆ficos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.
Los periodistas registrados pueden suscribirse al en EurekAlert! para acceder a comunicados de prensa p煤blicos y retenidos.听 Para consultas de los medios, comun铆quese con newsroom@acs.org.
Nota: ACS no realiza investigaciones, pero publica y divulga estudios cient铆ficos revisados por expertos.鈥�
View the image