FOR IMMEDIATE RELEASE
ACS News Service Weekly PressPac: October 13, 2021
Storing data as mixtures of fluorescent dyes (video)
ACS Central Science
As the world鈥檚 data storage needs grow, new strategies for preserving information over long periods with reduced energy consumption are needed. Now, researchers reporting in聽ACS Central Science聽have developed a data storage approach based on mixtures of fluorescent dyes, which are deposited onto an epoxy surface in tiny spots with an inkjet printer. The mixture of dyes at each spot encodes binary information that is read with a fluorescent microscope.
Current devices for data storage, such as optical media, magnetic media and flash memory, typically last less than 20 years, and they require substantial energy to maintain stored information. Scientists have explored using different molecules, such as DNA or other polymers, to store information at high density and without power, for thousands of years or longer. But these approaches are limited by factors such as high relative cost and slow read/write speeds. George Whitesides, Amit Nagarkar and colleagues wanted to develop a molecular strategy that stores information with high density, fast read/write speeds and acceptable cost.
The researchers chose seven commercially available fluorescent dye molecules that emit light at different wavelengths. They used the dyes as bits for American Standard Code for Information Interchange (ACSII) characters, where each bit is a 鈥�0鈥� or 鈥�1,鈥� depending on whether a particular dye is absent or present, respectively. A sequence of 0s and 1s was used to encode the first section of a seminal research paper by Michael Faraday, the famous scientist. The team used an inkjet printer to place the dye mixtures in tiny spots on an epoxy surface, where they became covalently bound. Then, they used a fluorescence microscope to read the emission spectra of dye molecules at each spot and decode the message. The fluorescent data could be read 1,000 times without a significant loss in intensity. The researchers also demonstrated the technique鈥檚 ability to write and read an image of Faraday. The strategy has a read rate of 469 bits/s, which is the fastest reported for any molecular information storage method, the researchers say.
The authors acknowledge funding from the聽. The researchers acknowledge equity interests and a board position in Datacule, Inc.
###
The American Chemical 中国365bet中文官网 (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The 中国365bet中文官网 is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical聽Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world鈥檚 scientific knowledge. ACS鈥� main offices are in Washington, D.C., and Columbus, Ohio.
Registered journalists can subscribe to the to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.
Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.
Media Contact
ACS Newsroom
newsroom@acs.org
###
La sociedad American Chemical 中国365bet中文官网 (ACS) es una organizaci贸n sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformaci贸n del poder de la qu铆mica. Su misi贸n es promover el conocimiento cient铆fico, empoderar a la comunidad global y defender la integridad cient铆fica, y su visi贸n es un mundo construido bas谩ndose en la ciencia. La Sociedad es l铆der mundial en la promoci贸n de la excelencia en la educaci贸n cient铆fica y en el acceso a informaci贸n e investigaci贸n relacionadas con la qu铆mica a trav茅s de sus m煤ltiples soluciones de investigaci贸n, publicaciones revisadas por expertos, conferencias cient铆ficas, libros electr贸nicos y noticias semanales peri贸dicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las m谩s citadas, las m谩s fiables y las m谩s le铆das en la literatura cient铆fica; sin embargo, la propia ACS no realiza investigaci贸n qu铆mica. Como l铆der en soluciones de informaci贸n cient铆fica, su divisi贸n CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservaci贸n, la conexi贸n y el an谩lisis de los conocimientos cient铆ficos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.
Los periodistas registrados pueden suscribirse al en EurekAlert! para acceder a comunicados de prensa p煤blicos y retenidos.聽 Para consultas de los medios, comun铆quese con newsroom@acs.org.
Nota: ACS no realiza investigaciones, pero publica y divulga estudios cient铆ficos revisados por expertos.鈥�