FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: September 22, 2021

Microneedle patch delivers COVID-19 DNA vaccine; doesn鈥檛 require cold storage


ACS Nano

More than 2 billion people worldwide are fully vaccinated against COVID-19. However, many who live in resource-limited countries haven鈥檛 been able to get vaccines, partly because these areas lack temperature-controlled shipping and storage facilities. Now, researchers reporting in听ACS Nano听have developed a microneedle patch that delivers a COVID-19 DNA vaccine into the skin, causing strong immune responses in cells and mice. Importantly, the patch can be stored for over 30 days at room temperature.

To date, the U.S. Food and Drug Administration has authorized three vaccines for use during the COVID-19 pandemic: one based on protein, and two on RNA. All of them must be kept refrigerated or frozen, which limits their distribution to remote or resource-limited areas. In addition, the vaccines must be administered by a healthcare worker as an injection into a muscle. Because immune cells aren鈥檛 typically found in muscles, scientists have investigated various ways to deliver vaccines into the skin, which contains abundant antigen-presenting cells (APCs) and could therefore generate a stronger immune response. Hui Li, Guangjun Nie, Hai Wang and colleagues wanted to develop a microneedle patch that efficiently delivers a COVID-19 vaccine under the skin, causing potent and durable immunity without the need for a cold chain or painful injections. 听

The researchers based their vaccine on DNA, which is easier to make than RNA or protein. It鈥檚 also more stable than RNA. However, in clinical trials, intramuscular DNA vaccines have been limited in their effectiveness because, unlike RNA or protein, the DNA must find its way inside the cell nucleus to work. By delivering the vaccine into APC-rich skin rather than muscle, the researchers reasoned that they could increase the chances that the DNA would enter the nucleus of an APC.

To make their delivery system, the team attached DNA sequences encoding either the SARS-CoV-2 spike protein or nucleocapsid protein to the surface of non-toxic nanoparticles. Inside the nanoparticles was an adjuvant 鈥� a molecule that helps stimulate an immune response. Then, the researchers coated a microneedle patch with the vaccine nanoparticles. The small rectangular patch contained 100 biodegradable microneedles, each less than 1/10 the diameter of a bee鈥檚 stinger, that could painlessly penetrate the skin鈥檚 outer layer. The researchers tested the system in mice, showing that the spike-protein-encoding microneedle patch caused strong antibody and T-cell responses, with no observable side effects. Because the vaccine patches can be stored at room temperature for at least 30 days without losing efficacy, they could be an important tool for developing COVID-19 vaccines with global accessibility, the researchers say.

The authors acknowledge funding from the听听补苍诲听.

###

The American Chemical 中国365bet中文官网 (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The 中国365bet中文官网 is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical听Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world鈥檚 scientific knowledge. ACS鈥� main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom
newsroom@acs.org

###

La sociedad American Chemical 中国365bet中文官网 (ACS) es una organizaci贸n sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformaci贸n del poder de la qu铆mica. Su misi贸n es promover el conocimiento cient铆fico, empoderar a la comunidad global y defender la integridad cient铆fica, y su visi贸n es un mundo construido bas谩ndose en la ciencia. La Sociedad es l铆der mundial en la promoci贸n de la excelencia en la educaci贸n cient铆fica y en el acceso a informaci贸n e investigaci贸n relacionadas con la qu铆mica a trav茅s de sus m煤ltiples soluciones de investigaci贸n, publicaciones revisadas por expertos, conferencias cient铆ficas, libros electr贸nicos y noticias semanales peri贸dicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las m谩s citadas, las m谩s fiables y las m谩s le铆das en la literatura cient铆fica; sin embargo, la propia ACS no realiza investigaci贸n qu铆mica. Como l铆der en soluciones de informaci贸n cient铆fica, su divisi贸n CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservaci贸n, la conexi贸n y el an谩lisis de los conocimientos cient铆ficos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.

Los periodistas registrados pueden suscribirse al en EurekAlert! para acceder a comunicados de prensa p煤blicos y retenidos.听 Para consultas de los medios, comun铆quese con newsroom@acs.org.

Nota: ACS no realiza investigaciones, pero publica y divulga estudios cient铆ficos revisados por expertos.鈥�

Microneedle pate
This microneedle patch could someday replace a needle for delivering COVID-19 vaccines.
Credit: Adapted from ACS Nano 2021, DOI: 10.1021/acsnano.1c03252
View larger image