FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: April 13, 2022

3D printing smart clothes with a new liquid metal-alginate ink (video)


ACS Applied Materials & Interfaces

In the future, smart clothing might monitor our posture, communicate with smartphones and manage our body temperature. But first, scientists need to find a way to cost-effectively print intricate, flexible and durable circuits onto a variety of fabrics. Now, researchers reporting in聽ACS Applied Materials & Interfaces聽have developed a conductive 3D printing ink made of liquid metal droplets coated with alginate, a polymer derived from algae.聽

Youtube ID: hyEGK8NmCiI

Conventional electronics are rigid and unable to withstand the twisting and stretching motions that clothing undergoes during typical daily activities. Because of their fluid nature and excellent conductivity, gallium-based liquid metals (LMs) are promising materials for flexible electronics. However, LMs don鈥檛 stick well to fabrics, and their large surface tension causes them to ball up during 3D printing, rather than form continuous circuits. Yong He and colleagues wanted to develop a new type of conductive ink that could be 3D printed directly onto clothing in complex patterns.

To make their ink, the researchers mixed LM and alginate. Stirring the solution and removing the excess liquid resulted in LM microdroplets coated with an alginate microgel shell. The ink was very thick until it was squeezed through a nozzle for 3D printing, which broke hydrogen bonds in the microgel and made it more fluid. Once the ink reached the fabric surface, the hydrogen bonds reformed, causing the printed pattern to maintain its shape. The team 3D printed the new ink onto a variety of surfaces, including paper, polyester fabrics, nonwoven fabrics and acrylic-based tape. Although the printed patterns were not initially conductive, the researchers activated them by stretching, pressing or freezing, which ruptured the dried alginate networks to connect the LM microdroplets.

After activation, the printed circuits had excellent electrical conductivity and strain sensing properties. In addition, applying a small voltage to the ends of the circuit caused it to heat up, even in very cold temperatures. To demonstrate the ink鈥檚 capabilities, the team 3D printed a series of electronics onto commercial clothing. On a T-shirt, they printed a near-field communication tag that directed a smartphone placed nearby to open a web site. Other sensors printed on clothing monitored the motion of an elbow or knee joint. And a circuit powered by a small battery heated up the printed pattern to above 120 F in less than a minute. The LM-alginate ink can be recycled by soaking the fabric in a weak sodium hydroxide solution, recovering fresh liquid metal for new applications.

The authors acknowledge funding from the National Natural Science Foundation of China and the National Key Research and Development Program of Zhejiang Province.

###

The American Chemical 中国365bet中文官网 (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The 中国365bet中文官网 is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical聽Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world鈥檚 scientific knowledge. ACS鈥� main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom
newsroom@acs.org

###

La sociedad American Chemical 中国365bet中文官网 (ACS) es una organizaci贸n sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformaci贸n del poder de la qu铆mica. Su misi贸n es promover el conocimiento cient铆fico, empoderar a la comunidad global y defender la integridad cient铆fica, y su visi贸n es un mundo construido bas谩ndose en la ciencia. La Sociedad es l铆der mundial en la promoci贸n de la excelencia en la educaci贸n cient铆fica y en el acceso a informaci贸n e investigaci贸n relacionadas con la qu铆mica a trav茅s de sus m煤ltiples soluciones de investigaci贸n, publicaciones revisadas por expertos, conferencias cient铆ficas, libros electr贸nicos y noticias semanales peri贸dicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las m谩s citadas, las m谩s fiables y las m谩s le铆das en la literatura cient铆fica; sin embargo, la propia ACS no realiza investigaci贸n qu铆mica. Como l铆der en soluciones de informaci贸n cient铆fica, su divisi贸n CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservaci贸n, la conexi贸n y el an谩lisis de los conocimientos cient铆ficos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.

Los periodistas registrados pueden suscribirse al en EurekAlert! para acceder a comunicados de prensa p煤blicos y retenidos.聽 Para consultas de los medios, comun铆quese con newsroom@acs.org.

Nota: ACS no realiza investigaciones, pero publica y divulga estudios cient铆ficos revisados por expertos.鈥�

A woman wearing cold weather running gear mid-stride, a superimposed cellphone zooms in on superimposed ink on her jacket
A new liquid metal-alginate ink can be 3D printed directly onto clothing, producing smart clothes that sense touch, monitor motion, interact with computers and manage temperature.