FOR IMMEDIATE RELEASE

ACS News Service Weekly PressPac: July 13, 2022

Turning white blood cells into medicinal microrobots with light


ACS Central Science

Medicinal microrobots could help physicians better treat and prevent diseases. But most of these devices are made with synthetic materials that trigger immune responses in vivo. Now, for the first time, researchers reporting in ACS Central Science have used lasers to precisely control neutrophils � a type of white blood cell � as a natural, biocompatible microrobot in living fish. The “neutrobots� performed multiple tasks, showing they could someday deliver drugs to precise locations in the body.

Microrobots currently in development for medical applications would require injections or the consumption of capsules to get them inside an animal or person. But researchers have found that these microscopic objects often trigger immune reactions in small animals, resulting in the removal of microrobots from the body before they can perform their jobs. Using cells already present in the body, such as neutrophils, could be a less invasive alternative for drug delivery that wouldn’t set off the immune system. These white blood cells already naturally pick up nanoparticles and dead red blood cells and can migrate through blood vessels into adjacent tissues, so they are good candidates for becoming microrobots. Previously, researchers have guided neutrophils with lasers in lab dishes, moving them around as “neutrobots.� However, information on whether this approach will work in living animals was lacking. So, Xianchuang Zheng, Baojun Li and colleagues wanted to demonstrate the feasibility of light-driven neutrobots in animals using live zebrafish.

The researchers manipulated and maneuvered neutrophils in zebrafish tails, using focused laser beams as remote optical tweezers. The light-driven microrobot could be moved up to a velocity of 1.3 µm/s, which is three times faster than a neutrophil naturally moves. In their experiments, the researchers used the optical tweezers to precisely and actively control the functions that neutrophils conduct as part of the immune system. For instance, a neutrobot was moved through a blood vessel wall into the surrounding tissue. Another one picked up and transported a plastic nanoparticle, showing its potential for carrying medicine. And when a neutrobot was pushed toward red blood cell debris, it engulfed the pieces. Surprisingly, at the same time, a different neutrophil, which wasn’t controlled by a laser, tried to naturally remove the cellular debris. Because they successfully controlled neutrobots in vivo, the researchers say this study advances the possibilities for targeted drug delivery and precise treatment of diseases. 

The authors acknowledge funding from the National Natural Science Foundation of China, the Basic and Applied Basic Research Foundation of Guangdong Province, and the Science and Technology Program of Guangzhou.

###

The American Chemical Öйú365betÖÐÎĹÙÍø (ACS) is a nonprofit organization founded in 1876 and chartered by the U.S. Congress. ACS is committed to improving all lives through the transforming power of chemistry. Its mission is to advance scientific knowledge, empower a global community and champion scientific integrity, and its vision is a world built on science. The Öйú365betÖÐÎĹÙÍø is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, e-books and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACSâ€� main offices are in Washington, D.C., and Columbus, Ohio.

Registered journalists can subscribe to the to access embargoed and public science press releases. For media inquiries, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Media Contact

ACS Newsroom
newsroom@acs.org

###

La sociedad American Chemical Öйú365betÖÐÎĹÙÍø (ACS) es una organización sin fines de lucro fundada en 1876 y aprobada por el Congreso de los Estados Unidos. La ACS se ha comprometido a mejorar la vida de todas las personas mediante la transformación del poder de la química. Su misión es promover el conocimiento científico, empoderar a la comunidad global y defender la integridad científica, y su visión es un mundo construido basándose en la ciencia. La Sociedad es líder mundial en la promoción de la excelencia en la educación científica y en el acceso a información e investigación relacionadas con la química a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias científicas, libros electrónicos y noticias semanales periódicas de Chemical & Engineering News. Las revistas de la ACS se encuentran entre las más citadas, las más fiables y las más leídas en la literatura científica; sin embargo, la propia ACS no realiza investigación química. Como líder en soluciones de información científica, su división CAS se asocia con innovadores internacionales para acelerar los avances mediante la preservación, la conexión y el análisis de los conocimientos científicos del mundo. Las sedes principales de la ACS se encuentran en Washington, D.C., y Columbus, Ohio.

Los periodistas registrados pueden suscribirse al en EurekAlert! para acceder a comunicados de prensa públicos y retenidos.  Para consultas de los medios, comuníquese con newsroom@acs.org.

Nota: ACS no realiza investigaciones, pero publica y divulga estudios científicos revisados por expertos.�

Two images of a neutrobot moving toward a nanoparticle
A laser precisely guided a “neutrobot� toward a nanoparticle (left image), which was picked up and transported away (right image).
Credit: Adapted from ACS Central Science 2022, DOI: 10.1021/acscentsci.2c00468
View larger image